Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

نویسندگان

  • E G ter Schure
  • M T Flikweert
  • J P van Dijken
  • J T Pronk
  • C T Verrips
چکیده

The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2O...

متن کامل

Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae

BACKGROUND Decarboxylation of α-ketoisovalerate to isobutyraldehyde is a key reaction in metabolic engineering of Saccharomyces cerevisiae for isobutanol production with published studies relying on overexpression of either the native ARO10 gene or of the Lactococcus lactis kivD decarboxylase gene resulting in low enzymatic activities. Here, we compare relevant properties for isobutanol product...

متن کامل

Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase.

Branched long-chain fatty acids of the iso and anteiso series are synthesized in many bacteria from the branched-chain alpha-keto acids of valine, leucine, and isoleucine after their decarboxylation followed by chain elongation. Two distinct branched-chain alpha-keto acid (BCKA) and pyruvate decarboxylases, which are considered to be responsible for primer synthesis, were detected in, and purif...

متن کامل

Partial purification and properties of branched-chain 2-oxo acid dehydrogenase of ox liver.

1. A branched-chain 2-oxo acid dehydrogenase was partially purified from ox liver mitochondria. 2. The preparation oxidized 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutyrate and D- and L-3-methyl-2-oxopentanoate. The apparent Km values for the oxo acids and for thiamin pyrophosphate, CoA, NAD+ and Mg2+ were determined. 3. The oxidation of each oxo acid was inhibited by isovaleryl (3-methylbutyry...

متن کامل

Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.

Catabolism of amino acids via the Ehrlich pathway involves transamination to the corresponding alpha-keto acids, followed by decarboxylation to an aldehyde and then reduction to an alcohol. Alternatively, the aldehyde may be oxidized to an acid. This pathway is functional in Saccharomyces cerevisiae, since during growth in glucose-limited chemostat cultures with phenylalanine as the sole nitrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 4  شماره 

صفحات  -

تاریخ انتشار 1998